
A Cloud-based Plagiarism Detecting System

Arpan Pal
MSc Student,

Department of Computing.
University of Surrey,Guildford, United Kingdom.

ap00253@surrey.ac.uk

Abstract—A Plagiarism Detection System is a computer
program that extracts and compares the text in the submissions
to see if similarity exists to another previous submissions by other
author/students that are not properly referenced/credited. To
improve the accuracy of detection in these systems, it is a
requirement to have a large data-set as corpus to find the most
number of possible sources of a given document. For any suck
system, there has always been a speed vs. accuracy issue to deal
with such large data-sets. Cloud computing transforms the way
of handling, consuming and managing BIG data, with promises
of cost efficiencies, on-demand scale, and faster time-to-market.
This paper proposes a way to detect plagiarism in a cloud based
approach where the LARGE data-sets can be handled
comparatively easily and will enhance the performance of
detection.

Keywords—cloud; computing; plagiarism; detection;

I. INTRODUCTION

Plagiarism or unattributed copying has always been a
sensitive and puzzling issue, and also, not-so-very legal.
However, to detect such offenses, the plagiarism detecting
systems have been introduced. Two main classifications of
such systems are attribute counting systems, which (simplified)
namely counts the common attributes of the corpus and
candidate to determine plagiarism, and structure metric systems
which analyze and quantize the content structure of the
document and detect plagiarism from the structure of the
document itself. To detect plagiarism accurately, it is needed to
have a big data-set(termed as corpus) that contains all the
relevant topics and text from where plagiarism may be
possible. The system is fed the plagiarized document(termed as
candidate) and it looks for matches in its dictionary comprised
of the aforementioned corpus to determine if any plagiarism
has taken place, and displays them accordingly. Our system
currently uses two approaches, a chunked hash based detection
system to detect identical portions of the documents and a word
based approach to find similar parts of the two documents. The
systems require exhaustive pattern-matching algorithms
scouring these file to find potential matches and so, common
problem in these systems are the time and performance issues,
if the data-set is too large, it takes time to read and iterate
through them for matches. This is exactly where comes in the
cloud-computing based approach, which utilizes the vast pool
of computing resources available to minimize the time taken,
and increase throughput. “According to Amazon Web Services
Chief Data Scientist Matt Wood, big data and cloud computing
are nearly a match made in heaven. Limitless, on-demand and
inexpensive resources open up new worlds of possibility, and a
central platform makes it easy for communities to share huge

datasets.”[4] The paper describes a Plagiarism Detection SaaS
(Software as a Service) created utilizing the Amazon EC2[1]

(Public Infrastructure as a Service) and S3 data storage
services, Openstack[2] (Private Infrastructure as a Service)
cloud to store and process the documents to look for plagiarism
and Google App Engine[3] (GAE, Platform as a Service) as an
interface to the application. All of these are able to scale
accordingly with the dataset size and client demand. The
detection approaches of the system includes a chunked hash
based system which computes overlapping hashes of a certain
length from the sentences and matches them corpus against
candidate, a word based system that detects identical word in
the documents and their similarity of sentence structure. The
results are displayed in a Google Chart[5] format, and are
customized to produce PAN-style output, further customization
to display results on the Google site, as a hit-per-document
table are on the process.

II. CLOUD ARCHITECTURE/COMPONENTS

The architecture of the system comprises of a Private
Infrastructure as a Service cloud Openstack, which is used as a
data analyzer and processor for our application, a public
Infrastructure as a Service cloud Amazon EC2/S3 where the
probable source documents are preprocessed to generate hash
index and word dictionary and the Public Software as a
Service GAE, which provides an graphical- user interface(GUI)
to the system for the users. The goal is to combine the
properties of both public and private IaaS clouds and a PaaS in
our system and do efficient detection in a RESTful manner.

The cloud components/concepts used here are:

.Openstack

“Openstack is an Infrastructure as a Service (IaaS) cloud
computing project that is free open source software released
under the terms of theElastic Load Balancing Apache License.
The project is managed by the Openstack Foundation, a
non-profit corporate entity established in September 2012[1]
to promote, protect and empower Openstack software and its
community.”[6]

In our application the hash-matching and word-matching
analysis is done in Openstack. Although being a private cloud
system Openstack is behind a firewall and cannot be accessed
without self-initiation. Hence it is set up as a daemon process
looking for data and processing and when given to it, otherwise
sleeping soundly.

.Amazon EC2

“Amazon Elastic Compute Cloud (Amazon EC2) is a web
service that provides re-sizable compute capacity in the cloud.
It is designed to make web-scale computing easier for
developers.”[7]

The application uses scalable Amazon EC2 instances to
generate the hash dictionary and the word-dictionarys of
corpus documents (namely hashlist.xml and wordlist.xml). It is
also used to compute the interprocess documents for hash and
word matching for the candidate documents. The instances are
launched through GAE and Boto, the Python interface for the
Amazon API.

.Google App Engine

“Google App Engine (often referred to as GAE or simply
App Engine, and also used by the acronym GAE) is a platform
as a service (PaaS) cloud computing platform for developing
and hosting web applications in Google-managed data centers.
Applications are sandboxed and run across multiple servers.
App Engine also offers automatic scaling for web
applications.”[8]

The Application uses GAE to provide a graphical user
interface to our system, the GAE implementation is also used
as the topmost layer of our system containing most if not all of
the controls and the display information such as ability to select
documents to check, the level of plagiarism in the document
etc. It also has the ability fire up ec2 instance to automate the
process of generating the analysis documents (hashes and
wordlists) from its web-page itself.

.Elastic Load Balancing

“Elastic Load Balancing automatically distributes
incoming application traffic across multiple Amazon EC2
instances.”[9]

It allows to achieve even greater fault tolerance in the
applications, seamlessly providing the amount of load
balancing capacity needed in response to incoming application
traffic. Elastic Load Balancing detects unhealthy instances
within a pool and automatically reroutes traffic to healthy
instances until the unhealthy instances have been restored.

.Amazon Elastic MapReduce

“Amazon Elastic MapReduce (Amazon EMR) is a web
service that enables businesses, researchers, data analysts,
and developers to easily and cost-effectively process vast
amounts of data. It utilizes a hosted Hadoop framework
running on the web-scale infrastructure of Amazon Elastic
Compute Cloud (Amazon EC2) and Amazon Simple Storage
Service (Amazon S3).”[11]

.Representational State Transfer Protocol (REST)

The REST architectural style was developed by W3C
Technical Architecture Group (TAG) in parallel with
HTTP/1.1, based on the existing design of HTTP/1.0 The
World Wide Web represents the largest implementation of a
system conforming to the REST architectural style.

Key goals of REST include Scalability of component
interactions, Generality of interfaces, Independent deployment

of component, Intermediary components to reduce latency,
enforce security and encapsulate legacy systems .

The Architecture of the application:

The documents, both corpus and candidate are stored in S3.

For generating the dictionaries of hashes and words, these
documents are downloaded into a number of EC2
instance(s)determined by the EMR function,After this process
completes, the generated files (hash dictionary and word
dictionary or any of the candidate documents) are exported into
respective S3 buckets.

The first time, and every time the dictionaries are generated
and put into S3, the Openstack instances downloads them
through a daemon process that keeps requesting the files. When
a client wishes to check a document, Openstack gets the
information by contacting GAE and it downloads the processed
interpretations of the file from S3, matches them and creates
the result document, which afterwards is sent back to an S3
bucket for to be displayed in GAE.

GAE displays the option to either process all of the corpus and
candidate text documents (Generate Index) to get the hash and
word dictionaries, or to analyze (Check) any one of the
candidate documents to the processed corpus dictionaries. If
the client chooses to regenerate the indexes , the GAE initiates
the process by notifying EC2 instances through Boto. If t he
client chooses to check, the list of the candidate documents are
displayed, any one of them can be chosen to check, when done
so, the GAE looks for the file in an S3 bucket, if found, then
downloads it and displays the information in a Google Graph,
and if not, then prepares a list for Openstack to download and
process the next time it contacts GAE. The figure below is the
architecture and DFD of the application.

Reasons for choosing EMR over normal EC2 instances were :

1) Easy and more intuitive to implement
2) Less time to setup custom bootstrap code
3) More efficient although a bit restricted
4) No need to administer clusters, but can resize on-the fly
5) Better support from Amazon

Fig. 1. Architecture, Data Flow & Process description (basic) of the
system.[12]

III. SYSTEM COMPONENTS ANALYSIS/IMPLEMENTATION

The application written in python detects plagiarism in
given documents [a subset of clean-texts and plagiarised texts
taken from PAN'11 data-sets] and displays them. The
architectural description of the application is quite simple, the
main application is divided into modules that would be put in
each place respectively EC2, Openstack and GAE. The python,
data, and dictionary files for each module in their respective
folders and bash scripts to automate them.

The first working logic of the application is quite simply to
match the MD5 hashes of the word groups from the
clean-text(corpus) subset to the plagiarised text subset to
determine if any plagiarism has taken place or not. From the
text we are given as source files, we generate a index file
which contains list of file-names, and MD5 hashes of the
words in that file, separated into 8 word overlapping groups.
The snippet of hash generation may be as follows:
[taken from /ec2/py/genhash.py]

h=hashlib.md5() #--hash object
for word in wordlist:

string="" #--set null every iteration
while i<(j+wordlenhash): #--default wordlenhash=8

string+=wordlist[i] #--word added to string
h.update(wordlist[i]) #--word updated to hash

 #--object
i+=1

 #--iterator for making strings
hashlist= open(destxmlpath, 'a+')
hashlist.write("<hash>"+h.hexdigest()+

"</hash><text>"+string+"</text><filepath>"+srcpath+"</filepath
>\n") #--storing hash,text,filepath in file

hashlist.close()

 The application then checks for matches in the hashes in
the samely processed plagiarised candidate text, identical to
those of the source text, and if any are found, it is considered a
hit and that source text is considered to be the source of that
particular candidate text. Now we collect such hits for the
particular file and display that as a graph result for how much
plagiarism has taken place for that document. The snippet for
this may be as follows:
[taken from /Openstack/py/hashmatch3.py]

while i<=len(canddata)-1:
candhash, candtext, candfilepath=procstrhash(canddata[i])
hashdict=open(hashdictpath).readlines() #path to hashdict
for line in hashdict: #while j<=len(hashdata)-1:

corphash, corptext, corpfilepath= procstrhash(line)
if (candhash==corphash):

feature+="<feature
name=\"detected-plagiarism\" this_text="+candtext+"
source_reference="+corpfilepath+"
source_text="+corptext+"\"/>\n"

hashdict.close()
i+=1

The second working logic of the application is to look for
similar word structure patterns (m*n) in the documents. This
checks for for minimum 3 same words in in one 8-word
overlapping groups made from the sentences of the document.
From the source files a dictionary of all the words per file, all
the files is generated. The snippet of generating such a
dictionary may be as below: [Snippet not included to save
space]
 Now, to check, first the suspicious-document is processed

as above, and then the output of that file is matched with all the
words of one file at a time, for all the files. If atleast 3 of the
words from the 8 word overlapping group (order: m) of corpus
are in the 8 word overlapping group of candidate (order: n),
then it is considered a hit and and the candidate text is
considered to be influenced by the source text. [Snippet not
included to save space, but is similar in logic as the
hash-generating snippet]

To help and automate this process, the bash scripts
generator.sh and macher.sh, and refresher.sh are written, the
generator.sh runs in EC2 and downloads, passes all corpus
documents in the S3 bucket to the python files to be processed,
and compresses, saves the output files (the dictionaries) back in
S3., this same script also generates the candidate hash and
m*n-word matching files which are also put in S3 and later
downloaded in Openstack. The matcher.sh runs in Openstack
and matches each of the preprocessed candidate documents
with the dictionaries and produces the result document, and
sends it to S3. The refresher.sh refreshes the dictionaries in
Openstack and looks for new documents in the
corpus/candidate buckets that have not been processed yet.

IV. RESULTS

In this application we produce two values for each
document, respectively the amount plagiarised versus the
original amount. These values are sent to the GAE and it uses
the Google Chart API to display the amount of plagiarism in
the document in GAE, as shown below,

 Suspicious-document-182.txt

 Fig 2: Output in Google Apps Engine

 And we also produce two files that are the PAN-style XML
documents that contain information about the possible sources
and the text offset determines the beginning and end of the
plagiarism in that document. The schema for such an output is
given below, this can be used to prettify the display in GAE, or
other further modification purposes.

<?xml version="1.0" encoding="UTF-8"?>
<document

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.uni-weimar.de/m

edien/webis/research/corpora/pan-pc-09/document.xsd"
reference="suspicious-document00482.txt">

<feature name="detected-plagiarism" this_offset="5"
this_length="1000" source_reference="source-document00039.txt"
source_offset="25" source_length="8"/>

<feature name="detected-plagiarism" this_offset="5"
this_length="1000" source_reference="source-document00275.txt"
source_offset="67" source_length="8"/>
</document>

. . .

. . .

Original(85%) Plagiarised(15%)

http://www.w3.org/2001/XMLSchema-instance
http://www.uni-weimar.de/medien/webis/research/corpora/pan-pc-09/document.xsd
http://www.uni-weimar.de/medien/webis/research/corpora/pan-pc-09/document.xsd

V. IMPLEMENTATION AND TESTING

The first task was to create a non-cloud system that works
and is scalable enough that when we put it on the cloud, we can
expect it to do the same work, only better and faster. The
implementation and small amounts of testing goes side by side,
except the extensive testing that takes place after the
application built.

The application is based on typically 3 modules, the GAE,
EC2 and Openstack. For the local application, first the python
functions to generate and match hashes were written, and then
put in respective modules. Then the bash-scripts were written
and all the code was debugged, cleaned and tested for
independent operations.

At this point, the interface for GAE was started to build.
As the application goes live as soon as we put it on the cloud, it
was necessary to make sure each of the 3 modules can operate
and process data independently. Most of the coding time was
spent here.

Then the cloud architecture was set up, some notable tasks
in this phase was configuring the AMI, Setting up the EMR
function and bootstrap codes, Setting up Openstack instances,
installing and configuring Boto, setting up access-rights etc.

After setting up the cloud system, the main task was to test
the data transfer points and how well they work with each
other, and at the end, how well the application works itself.
After all that is done, the focus goes to optimizing and
extending the application, and add extra things like second
working logic, IO optimization, improved UI etc.

The allocated time frame is roughly 2 months(25th March
to 14th May 2013) for presenting this application. The time
division is as follows:

TABLE I. TIMELINE FOR IMPLEMENTATION & TESTING.

Weeks: To Do:

 25th March – 31st March Make a non-cloud system and test the
basic functionalities in own system.

 01st April – 07thApril Make GAE Interface and test it locally.

 08thApril – 14thApril Set up clouds EC2 and Openstack, test if
all functionalities are working as needed,

set up access rights.

 15th April – 21stApril Put application on cloud. Make
appropriate test cases to test application.

 22ndApril – 28thApril Testing/Optimizing phase 1. Start
writing submission 2.

 29thApril – 05thMay Testing phase 2, Keep writing
submission 2.

 06th May – 14th May Finish writing submission 2.

14th May – 21th May Extra Days.

VI. CRITICISM

The goal of this coursework is to combine the properties of
a Private Infrastructure as a Service cloud, a public

Infrastructure as a Service cloud and the Public Software as a
Service and do simple but quite efficient plagiarism detection.
However, the prospects to improve and optimize this
application are very good.

The application can currently detect identical plagiarism
using the chunk based hashing approach, and can identify
sources from used words to a certain extent using a structure
metric approach, but support for detecting complex plagiarism
or obfuscation is not yet included. Also general IO or disk-read
optimizations are needed to increase efficiency.

The main privacy and security issue of any automated
plagiarism detecting system are protecting the intellectual
property of the authors. One main criticism of the system
would be that it exposes the documents publicly in the S3
buckets, although this can be partially handled by using
login-authentication-authorization techniques and restricting
public access to data, still data breach can happen. Same things
can be said for data leakage / segregation / data-ownership /
disaster recovery etc issues. One approach can be to remove
the text data and keep only the hashes, but at a cost of dumbing
down the quality of the results. Otherwise encryption
techniques is can be implemented, but then it becomes a
security vs. accessibility issue.

The current application displays a graph created by the
Google Chart API display the amount of plagiarism in a
document on the web-page and a PAN style XML document.
But that is not enough information for all the clients. The
output of the application can be prettified greatly, like adding
option for client to upload his/her personal files to S3 for
checking, ability to change the length of overlapping groups,
highlighting the plagiarised part in the candidate document,
improving the overall look of GAE, introducing HTML5, CSS
etc. The latter are not in direct relation with the application, but
more on the topic of web development.

VII. CONCLUSION

Plagiarism is a big problem not only for academics but also
for the corporate world. The system discussed here does simple
but efficient plagiarism detection, and can scale gracefully.
Results also tend to be quite accurate and sufficient. Although
the application is currently at its toddler times, it reveals
enough potential to be considered as a step to the future.

References

[1] Amazon Web Services - https://aws.amazon.com/ [accessed Mar 25,
2013]

[2] Openstack Cloud Computing - http://www.Openstack.org/ [accessed
Mar 25, 2013]

[3] Google App Engine - https://appengine.google.com [accessed Mar 25,
2013]

[4] http://gigaom.com/2012/11/30/why-amazon-thinks-big-data-was-made-f
or-the-cloud/ [accessed may 14, 2013]

[5] Google Chart API - https://developers.google.com/chart/

[6] Openstack - https://en.wikipedia.org/wiki/Openstack

[7] EC2 - https://aws.amazon.com/ec2/

[8] GAE - https://en.wikipedia.org/wiki/Google_App_Engine

[9] ELB - https://aws.amazon.com/elasticloadbalancing/

[10] REST - https://en.wikipedia.org/wiki/Representational_state_transfer

[11] EMR - https://aws.amazon.com/elasticmapreduce/

https://aws.amazon.com/elasticmapreduce/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://aws.amazon.com/elasticloadbalancing/
https://en.wikipedia.org/wiki/Google_App_Engine
https://aws.amazon.com/ec2/
https://en.wikipedia.org/wiki/OpenStack
https://developers.google.com/chart/
https://appengine.google.com/
http://www.openstack.org/
https://aws.amazon.com/

	I. Introduction
	II. Cloud Architecture/components
	. Openstack
	. Amazon EC2
	. Google App Engine
	. Elastic Load Balancing
	. Amazon Elastic MapReduce
	. Representational State Transfer Protocol (REST)
	1) Easy and more intuitive to implement
	2) Less time to setup custom bootstrap code
	3) More efficient although a bit restricted
	4) No need to administer clusters, but can resize on-the fly
	5) Better support from Amazon

	III. System Components Analysis/Implementation
	IV. Results
	V. Implementation and Testing
	VI. Criticism
	VII. Conclusion
	References

