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Abstract—A  Plagiarism  Detection  System  is  a  computer 
program that extracts and compares the text in the submissions 
to see if similarity exists to another previous submissions by other 
author/students  that  are  not  properly  referenced/credited.  To 
improve  the  accuracy  of  detection  in  these  systems,  it  is  a 
requirement to have a large data-set as corpus to find the most 
number of possible sources of a given document. For any suck 
system, there has always been a speed vs. accuracy issue to deal  
with such large data-sets. Cloud computing transforms the way 
of handling, consuming and managing BIG data, with promises 
of cost efficiencies, on-demand scale, and faster time-to-market. 
This paper proposes a way to detect plagiarism in a cloud based 
approach  where  the  LARGE  data-sets  can  be  handled 
comparatively  easily  and  will  enhance  the  performance  of 
detection.
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I.  INTRODUCTION 

Plagiarism  or  unattributed  copying  has  always  been  a 
sensitive  and  puzzling  issue,  and  also,  not-so-very  legal. 
However,  to  detect  such  offenses,  the  plagiarism  detecting 
systems  have  been  introduced.  Two  main  classifications  of 
such systems are attribute counting systems, which (simplified) 
namely  counts  the  common  attributes  of  the  corpus  and 
candidate to determine plagiarism, and structure metric systems 
which  analyze  and  quantize   the  content  structure  of  the 
document  and  detect  plagiarism  from  the  structure  of  the 
document itself. To detect plagiarism accurately, it is needed to 
have  a  big  data-set(termed  as  corpus)  that  contains  all  the 
relevant  topics  and  text  from  where  plagiarism  may  be 
possible. The system is fed the plagiarized document(termed as 
candidate) and it looks for matches in its dictionary comprised 
of the aforementioned corpus to determine if any plagiarism 
has taken place,  and displays them  accordingly. Our system 
currently uses two approaches, a chunked hash based detection 
system to detect identical portions of the documents and a word 
based approach to find similar parts of the two documents. The 
systems  require  exhaustive  pattern-matching  algorithms 
scouring these file to find potential matches  and so, common 
problem in these systems are the time and performance issues, 
if  the data-set  is  too large,  it  takes  time to read  and  iterate 
through them for matches. This is exactly  where comes in the 
cloud-computing based approach, which utilizes the vast pool 
of computing resources available to minimize the time taken, 
and increase throughput. “According to Amazon Web Services  
Chief Data Scientist Matt Wood, big data and cloud computing  
are nearly a match made in heaven. Limitless, on-demand and  
inexpensive resources open up new worlds of possibility, and a  
central platform makes it easy for communities to share huge  

datasets.”[4] The paper describes a Plagiarism Detection SaaS 
(Software  as  a  Service)  created  utilizing the Amazon  EC2[1] 

(Public  Infrastructure  as  a  Service)  and  S3 data  storage 
services,  Openstack[2] (Private  Infrastructure  as  a  Service) 
cloud to store and process the documents to look for plagiarism 
and Google App Engine[3] (GAE, Platform as a Service) as an 
interface  to  the  application.  All  of  these  are  able  to  scale 
accordingly  with  the  dataset  size  and  client  demand.  The 
detection approaches of the system includes a chunked hash 
based system which computes overlapping hashes of a certain 
length  from the  sentences  and matches  them corpus  against 
candidate, a word based system that detects identical word in 
the documents and their similarity of sentence structure. The 
results  are  displayed  in  a  Google  Chart[5]  format,  and  are 
customized to produce PAN-style output, further customization 
to  display results  on the  Google site,  as  a  hit-per-document 
table are on the process.

II. CLOUD ARCHITECTURE/COMPONENTS

The  architecture  of  the  system  comprises  of  a  Private  
Infrastructure as a Service cloud Openstack, which is used as a 
data  analyzer  and  processor  for  our  application,  a  public  
Infrastructure as a Service cloud Amazon EC2/S3 where the 
probable source documents are preprocessed to generate hash 
index  and  word  dictionary  and  the  Public  Software  as  a  
Service GAE, which provides an graphical- user interface(GUI) 
to  the  system  for  the  users.  The  goal  is  to  combine  the 
properties of both public and private IaaS clouds and a PaaS  in 
our system and do efficient detection in a RESTful manner.

The cloud components/concepts used here are:

.Openstack  

“Openstack is an Infrastructure as a Service (IaaS) cloud  
computing project that is free open source software released  
under the terms of theElastic Load Balancing Apache License.  
The  project  is  managed  by  the  Openstack  Foundation,  a  
non-profit corporate entity established in September 2012[1]  
to promote, protect and empower Openstack software and its  
community.”[6]

In our application the hash-matching and word-matching 
analysis is done in Openstack. Although being a private cloud 
system Openstack is behind a firewall and cannot be accessed 
without self-initiation. Hence it is set up as a daemon process 
looking for data and processing and when given to it, otherwise 
sleeping soundly. 



.Amazon EC2  

“Amazon Elastic Compute Cloud (Amazon EC2) is  a web 
service that provides re-sizable compute capacity in the cloud.  
It  is  designed  to  make  web-scale  computing  easier  for  
developers.”[7]

The  application  uses  scalable  Amazon  EC2 instances  to 
generate  the  hash  dictionary   and   the  word-dictionarys  of 
corpus documents (namely hashlist.xml and wordlist.xml). It is 
also used to compute the interprocess documents for hash and 
word matching for the candidate documents. The instances are 
launched through GAE and Boto, the Python interface for the 
Amazon API.

.Google App Engine  

“Google App Engine (often referred to as GAE or simply  
App Engine, and also used by the acronym GAE) is a platform 
as a service (PaaS) cloud computing platform for developing  
and hosting web applications in Google-managed data centers.  
Applications are sandboxed and run across multiple servers.  
App  Engine  also  offers  automatic  scaling  for  web  
applications.”[8]

The  Application  uses  GAE  to  provide  a  graphical  user 
interface to our system, the GAE implementation is also used 
as the topmost layer of our system containing most if not all of 
the controls and the display information such as ability to select 
documents to check, the level of plagiarism in the document 
etc. It also has the ability fire up ec2 instance to automate the 
process  of  generating  the  analysis  documents  (hashes  and 
wordlists) from its web-page itself.

.Elastic Load Balancing  

“Elastic  Load  Balancing  automatically  distributes 
incoming  application  traffic  across  multiple  Amazon  EC2  
instances.”[9]

It  allows  to  achieve  even  greater  fault  tolerance  in  the 
applications,  seamlessly  providing  the  amount  of  load 
balancing capacity needed in response to incoming application 
traffic.  Elastic  Load  Balancing  detects  unhealthy  instances 
within  a  pool  and  automatically  reroutes  traffic  to  healthy 
instances until the unhealthy instances have been restored.

.Amazon Elastic MapReduce  

“Amazon  Elastic  MapReduce  (Amazon  EMR) is  a  web 
service  that  enables  businesses,  researchers,  data  analysts,  
and  developers  to  easily  and  cost-effectively  process  vast  
amounts  of  data.  It  utilizes  a  hosted  Hadoop  framework  
running  on  the  web-scale  infrastructure  of  Amazon  Elastic  
Compute Cloud (Amazon EC2) and Amazon Simple Storage  
Service (Amazon S3).”[11]

.Representational State Transfer   Protocol (REST)  

The  REST  architectural  style  was  developed  by  W3C 
Technical  Architecture  Group  (TAG)  in  parallel  with 
HTTP/1.1,  based  on  the  existing  design  of  HTTP/1.0  The 
World Wide Web represents the largest implementation of a 
system conforming to the REST architectural style.

Key  goals  of  REST  include  Scalability  of  component  
interactions, Generality of interfaces, Independent deployment  

of  component,  Intermediary  components  to  reduce  latency,  
enforce security and encapsulate legacy systems .

The Architecture of the application:

The documents, both corpus and candidate are stored in S3. 

For  generating  the  dictionaries  of  hashes  and  words,  these 
documents  are  downloaded  into  a  number  of  EC2 
instance(s)determined by the EMR function,After this process 
completes,  the  generated  files  (hash  dictionary  and  word 
dictionary or any of the candidate documents) are exported into 
respective S3 buckets.

The first  time, and every time the dictionaries are generated 
and  put  into  S3,  the  Openstack instances  downloads  them 
through a daemon process that keeps requesting the files. When 
a  client  wishes  to  check  a  document,  Openstack  gets  the 
information by contacting GAE and it downloads the processed 
interpretations of the file from S3, matches them and creates 
the result  document, which afterwards is sent back to an S3 
bucket for to be displayed in GAE.

GAE  displays the option to either process all of the corpus and 
candidate text documents (Generate Index) to get the hash and 
word  dictionaries,  or  to  analyze  (Check)  any  one  of  the 
candidate documents  to the processed corpus dictionaries.  If 
the  client chooses to regenerate the indexes , the GAE initiates 
the process by notifying EC2 instances through Boto. If t he 
client chooses to check, the list of the candidate documents are 
displayed, any one of them can be chosen to check, when done 
so, the GAE looks for the file in an S3 bucket, if found, then 
downloads it and displays the information in a Google Graph, 
and if not, then prepares a list for Openstack to download and 
process the next time it contacts GAE. The figure below is the 
architecture and DFD of the application.

Reasons for choosing EMR over normal EC2 instances were :

1) Easy and more intuitive to implement
2) Less time to setup custom bootstrap code
3) More efficient although a bit restricted
4) No need to administer clusters, but can resize on-the fly
5) Better support from Amazon

Fig. 1.  Architecture, Data Flow  & Process description (basic)  of the  
system.[12]



III. SYSTEM COMPONENTS ANALYSIS/IMPLEMENTATION

The  application  written  in  python  detects  plagiarism  in 
given documents [a subset of clean-texts and plagiarised texts 
taken  from  PAN'11  data-sets]  and  displays  them.  The 
architectural description of the application is quite simple, the 
main application is divided into modules that would be put in 
each place respectively EC2, Openstack and GAE. The python, 
data, and dictionary files for each module in their respective 
folders and  bash scripts to automate them. 

The first working logic of the application is quite simply to 
match  the  MD5  hashes  of  the  word  groups  from  the 
clean-text(corpus)  subset  to  the  plagiarised  text  subset  to 
determine if any plagiarism has taken place or not. From the 
text  we  are  given  as  source  files,  we  generate  a  index  file 
which  contains  list  of  file-names,  and  MD5  hashes  of  the 
words in that file, separated into 8 word overlapping groups. 
The snippet of hash generation may be as follows:
[taken from /ec2/py/genhash.py]
        
h=hashlib.md5() #--hash object
for word in wordlist:

string="" #--set null every iteration
while  i<(j+wordlenhash):  #--default  wordlenhash=8

string+=wordlist[i]  #--word  added  to  string
h.update(wordlist[i])  #--word  updated  to  hash  

             #--object
i+=1

 #--iterator for making strings
hashlist= open(destxmlpath, 'a+')
hashlist.write("<hash>"+h.hexdigest()+  

"</hash><text>"+string+"</text><filepath>"+srcpath+"</filepath
>\n") #--storing hash,text,filepath in file

hashlist.close()

 The application then checks for matches in the hashes in 
the  samely  processed  plagiarised  candidate  text,  identical  to 
those of the source text, and if any are found, it is considered a 
hit and that source text is considered to be the  source of that 
particular  candidate  text.  Now  we  collect  such  hits  for  the 
particular file and display that as a graph result for how much 
plagiarism has taken place for that document. The snippet for 
this may be as follows:
[taken from /Openstack/py/hashmatch3.py]

while i<=len(canddata)-1:
candhash, candtext, candfilepath=procstrhash(canddata[i])
hashdict=open(hashdictpath).readlines() #path to hashdict
for line in hashdict: #while j<=len(hashdata)-1:

corphash, corptext, corpfilepath= procstrhash(line)
if (candhash==corphash):

feature+="<feature 
name=\"detected-plagiarism\" this_text="+candtext+" 
source_reference="+corpfilepath+" 
source_text="+corptext+"\"/>\n"

hashdict.close()
i+=1

The second working logic of the application is to look for 
similar word structure patterns (m*n) in the documents. This 
checks  for  for  minimum  3  same  words  in  in  one  8-word 
overlapping groups made from the sentences of the document. 
From the source files a dictionary of all the words per file, all 
the  files  is  generated.  The  snippet  of  generating   such  a 
dictionary  may  be  as  below:  [Snippet  not  included  to  save  
space]
     Now, to check, first the suspicious-document is processed 

as above, and then the output of that file is matched with all the 
words of one file at a time, for all the files. If  atleast 3 of the 
words from the 8 word overlapping group (order: m) of corpus 
are in the 8 word overlapping group of candidate (order:  n), 
then  it  is  considered  a  hit  and  and  the  candidate  text  is 
considered to be influenced by the   source text. [Snippet not  
included  to  save  space,  but  is  similar  in  logic  as  the  
hash-generating snippet]

To  help  and  automate  this  process,  the  bash  scripts 
generator.sh and macher.sh, and refresher.sh  are written, the 
generator.sh runs in EC2 and  downloads,  passes all corpus 
documents in the S3 bucket to the python files to be processed, 
and compresses, saves the output files (the dictionaries) back in 
S3.,  this  same  script  also  generates  the  candidate  hash  and 
m*n-word matching files which are also put in S3 and later 
downloaded in Openstack. The  matcher.sh runs in Openstack 
and  matches  each  of  the  preprocessed  candidate  documents 
with the dictionaries  and  produces  the result  document,  and 
sends it  to S3. The  refresher.sh refreshes  the dictionaries  in 
Openstack  and  looks  for  new  documents  in  the 
corpus/candidate buckets that have not been processed yet.

IV. RESULTS

In  this  application  we  produce  two  values  for  each 
document,  respectively  the  amount  plagiarised  versus  the 
original amount. These values are sent to the GAE and it uses 
the Google Chart API to display  the amount of plagiarism in 
the document in GAE, as shown below,

  Suspicious-document-182.txt

      Fig 2: Output in Google Apps Engine

     And we also produce two files that are the PAN-style XML 
documents that contain information about the possible sources 
and the text  offset  determines the beginning and end of  the 
plagiarism in that document. The schema for such an output is 
given below, this can be used to prettify the display in GAE, or 
other  further  modification  purposes.

<?xml version="1.0" encoding="UTF-8"?>
<document

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.uni-weimar.de/m

edien/webis/research/corpora/pan-pc-09/document.xsd"
reference="suspicious-document00482.txt">

<feature name="detected-plagiarism" this_offset="5"  
this_length="1000"  source_reference="source-document00039.txt"  
source_offset="25" source_length="8"/>

<feature name="detected-plagiarism" this_offset="5"  
this_length="1000"  source_reference="source-document00275.txt"  
source_offset="67" source_length="8"/>
</document>

. . . 

. . .

Original(85%) Plagiarised(15%)

http://www.w3.org/2001/XMLSchema-instance
http://www.uni-weimar.de/medien/webis/research/corpora/pan-pc-09/document.xsd
http://www.uni-weimar.de/medien/webis/research/corpora/pan-pc-09/document.xsd


V. IMPLEMENTATION AND TESTING

The first task was to create a non-cloud system that works 
and is scalable enough that when we put it on the cloud, we can 
expect  it  to  do  the  same  work,  only  better  and  faster.  The 
implementation and small amounts of testing goes side by side, 
except  the  extensive  testing  that  takes  place  after  the 
application built. 

The application is based on typically 3 modules, the GAE, 
EC2 and Openstack. For the local application, first the python 
functions to generate and match hashes were written, and then 
put in respective modules. Then the bash-scripts were written 
and  all  the  code  was  debugged,  cleaned  and  tested  for 
independent operations.  

At this point, the interface for GAE was started  to build. 
As the application goes live as soon as we put it on the cloud, it 
was necessary to make sure each of the 3 modules can operate 
and process data independently. Most of the coding time was 
spent here.

Then the cloud architecture was set up, some notable tasks 
in this phase was configuring the AMI, Setting up the EMR 
function and bootstrap codes, Setting up Openstack instances, 
installing and configuring Boto, setting up access-rights etc. 

After setting up the cloud system, the main task was to test 
the  data  transfer  points  and  how well  they  work  with  each 
other,  and at  the end, how well  the application works itself. 
After  all  that  is  done,  the  focus  goes  to  optimizing  and 
extending  the  application,  and  add  extra  things  like  second 
working logic, IO optimization, improved UI etc. 

The allocated time frame is roughly 2 months(25th March 
to 14th May 2013) for  presenting this application. The time 
division is as follows:

TABLE I. TIMELINE FOR IMPLEMENTATION & TESTING.

Weeks: To Do:

 25th March – 31st March Make a non-cloud system and test the 
basic functionalities in own system.

 01st April – 07thApril Make GAE Interface and test it locally.

 08thApril – 14thApril Set up clouds EC2 and Openstack, test if 
all functionalities are working as needed, 

set up access rights.

 15th April – 21stApril Put application on cloud. Make 
appropriate test cases to test application.

 22ndApril – 28thApril Testing/Optimizing phase 1. Start 
writing submission 2.

 29thApril – 05thMay Testing phase 2, Keep writing 
submission 2.

 06th May – 14th May Finish writing submission 2.

14th May – 21th May Extra Days.

VI. CRITICISM 

The goal of this coursework is to combine the properties of 
a  Private  Infrastructure  as  a  Service  cloud,  a  public 

Infrastructure as a Service cloud and the Public Software as a 
Service and do simple but quite efficient plagiarism detection. 
However,  the  prospects  to  improve  and  optimize  this 
application are very good. 

The  application  can  currently  detect  identical  plagiarism 
using  the  chunk  based  hashing  approach,  and  can  identify 
sources from used words to a certain extent using a structure 
metric approach, but support for detecting complex plagiarism 
or obfuscation is not yet included. Also general IO or disk-read 
optimizations are needed to increase efficiency. 

The  main  privacy  and  security  issue  of  any  automated 
plagiarism  detecting  system  are  protecting  the  intellectual 
property  of  the  authors.  One  main  criticism  of  the  system 
would  be  that  it  exposes  the  documents  publicly  in  the  S3 
buckets,  although  this  can  be  partially  handled  by  using 
login-authentication-authorization  techniques  and  restricting 
public access to data, still data breach can happen. Same things 
can be said for data leakage / segregation / data-ownership / 
disaster recovery etc issues. One approach can be to remove 
the text data and keep only the hashes, but at a cost of dumbing 
down  the  quality  of  the  results.  Otherwise  encryption 
techniques  is  can  be  implemented,  but  then  it  becomes  a 
security vs. accessibility issue.

The  current  application  displays  a  graph  created  by  the 
Google  Chart  API  display  the  amount  of  plagiarism  in  a 
document on the web-page and a PAN style XML document. 
But  that  is  not  enough  information  for  all  the  clients.  The 
output of the application can be prettified greatly, like adding 
option  for  client  to  upload  his/her  personal  files  to  S3  for 
checking, ability to change the length of overlapping groups, 
highlighting  the  plagiarised  part  in  the  candidate  document, 
improving the overall look of GAE, introducing HTML5, CSS 
etc. The latter are not in direct relation with the application, but 
more on the topic of web development. 

VII. CONCLUSION

Plagiarism is a big problem not only for academics but also 
for the corporate world. The system discussed here does simple 
but  efficient  plagiarism  detection,  and  can  scale  gracefully. 
Results also tend to be quite accurate and sufficient. Although 
the  application  is  currently  at  its  toddler  times,  it  reveals 
enough potential to be considered as a step to the future.
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